Classification of Alzheimer's disease using unsupervised diffusion component analysis
نویسندگان
چکیده
منابع مشابه
Classification of Alzheimer's disease using unsupervised diffusion component analysis.
The goal of this study is automated discrimination between early stage Alzheimer's disease (AD) magnetic resonance imaging (MRI) and healthy MRI data. Unsupervised Diffusion Component Analysis, a novel approach based on the diffusion mapping framework, reduces data dimensionality and provides pattern recognition that can be used to distinguish AD brains from healthy brains. The new algorithm co...
متن کاملClassification of Alzheimer′s Disease Using Nonlinear Independent Component Analysis
The goal of this study is to classify magnetic resonance imaging (MRI) of brains of patients with Alzheimer′s Disease (AD) and those without AD and then to identify changes in brain MRI in early stages of AD. A novel approach based on the diffusion map framework, which is considered to be one of the leading manifold learning methods, is used for this classification. Diffusion mapping provides d...
متن کاملRegional Analysis of FDG-PET for the Classification of Alzheimers Disease
We present a multi-region analysis of FDG-PET data for classification of subjects from the Alzheimer’s Disease Neuroimaging Initiative. Image data were obtained from 69 healthy controls, 71 Alzheimer’s disease patients, and 147 patients with mild cognitive impairment. Anatomical segmentations were automatically generated in the native MRI space of each subject, and regional signal intensities e...
متن کاملanalysis of ruin probability for insurance companies using markov chain
در این پایان نامه نشان داده ایم که چگونه می توان مدل ریسک بیمه ای اسپیرر اندرسون را به کمک زنجیره های مارکوف تعریف کرد. سپس به کمک روش های آنالیز ماتریسی احتمال برشکستگی ، میزان مازاد در هنگام برشکستگی و میزان کسری بودجه در زمان وقوع برشکستگی را محاسبه کرده ایم. هدف ما در این پایان نامه بسیار محاسباتی و کاربردی تر از روش های است که در گذشته برای محاسبه این احتمال ارائه شده است. در ابتدا ما نشا...
15 صفحه اولQuantum image classification using principal component analysis
We present a novel quantum algorithm for the classification of images. The algorithm is constructed using principal component analysis and von Neuman quantum measurements. In order to apply the algorithm we present a new quantum representation of grayscale images.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematical Biosciences and Engineering
سال: 2016
ISSN: 1551-0018
DOI: 10.3934/mbe.2016033